The effect of histidine modification on the activity of myo-inositol monophosphatase from bovine brain.

نویسندگان

  • P D Pelton
  • A J Ganzhorn
چکیده

The pH dependence of myo-inositol monophosphatase may indicate a role for histidine residues in the catalytic mechanism (Ganzhorn, A. J., and Chanal, M.-C. (1990) Biochemistry 29, 6065-6071). This possibility was investigated by chemical modification. At pH 6.0 and 25 degrees C, the enzyme was inactivated by diethylpyrocarbonate in a pseudo-first order reaction with a bimolecular rate constant of 0.37 M-1 s-1. Two histidines were modified rapidly with no effect on enzyme activity, while 3 residues were modified at a slower rate corresponding to the rate of inactivation. No noticeable changes in the secondary structure of the enzyme were observed by comparison of circular dichroic spectra before and after modification. Treatment of myo-inositol monophosphatase with diethylpyrocarbonate in the presence of inositol 1-phosphate, Mg2+, and Li+ protected 2 residues from modification and decreased the inactivation rate by about 5-fold. Spectrophotometric analysis, the restoration of enzyme activity by hydroxylamine, and the lack of any inhibitory effect with alkylating agents suggest that inactivation is due solely to modification of histidine. We conclude that a histidine residue is essential for activity and may act as a base catalyst during hydrolysis of the substrate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The purification and properties of myo-inositol monophosphatase from bovine brain.

1. An inositol monophosphatase was purified to homogeneity from bovine brain. 2. The enzyme is a dimer of subunit Mr 29,000. 3. The enzyme hydrolyses both enantiomers of myo-inositol 1-phosphate and both enantiomers of myo-inositol 4-phosphate, but has no activity towards inositol bisphosphates, inositol trisphosphates or inositol 1,3,4,5-tetrakisphosphate. 4. Several non-inositol-containing mo...

متن کامل

A review on the role of inositol in aquaculture

Inositol is usually classified as an essential vitamin for most animals, and is recognised as a part of the B-complex vitamins. Among all other inositol isomer forms, myo-inositol possesses biological activity. It is found in the brain, skeletal, heart, and main reproductive tissues and exists as a structural component of phosphatidylinositol in biological cell membranes. Myo-inositol, also act...

متن کامل

Characterization of the inositol monophosphatase gene family in Arabidopsis

Synthesis of myo-inositol is crucial in multicellular eukaryotes for production of phosphatidylinositol and inositol phosphate signaling molecules. The myo-inositol monophosphatase (IMP) enzyme is required for the synthesis of myo-inositol, breakdown of inositol (1,4,5)-trisphosphate, a second messenger involved in Ca(2+) signaling, and synthesis of L-galactose, a precursor of ascorbic acid. Tw...

متن کامل

A review on the role of inositol in aquaculture

Inositol is usually classified as an essential vitamin for most animals, and is recognised as a part of the B-complex vitamins. Among all other inositol isomer forms, myo-inositol possesses biological activity. It is found in the brain, skeletal, heart, and main reproductive tissues and exists as a structural component of phosphatidylinositol in biological cell membranes. Myo-inositol, also act...

متن کامل

Valproate decreases inositol biosynthesis.

BACKGROUND Lithium and valproate (VPA) are used for treating bipolar disorder. The mechanism of mood stabilization has not been elucidated, but the role of inositol has gained substantial support. Lithium inhibition of inositol monophosphatase, an enzyme required for inositol recycling and de novo synthesis, suggested the hypothesis that lithium depletes brain inositol and attenuates phosphoino...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 9  شماره 

صفحات  -

تاریخ انتشار 1992